Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            We investigate the transient and steady-state dynamics of the Bennati-Dragulescu-Yakovenko money game in the presence of probabilistic cheaters, who can misrepresent their financial status by claiming to have no money. We derive the steady-state wealth distribution per player analytically, and we show how the presence of hidden cheaters can be inferred from the relative variance of wealth per player. In scenarios with a finite number of cheaters amidst an infinite pool of honest players, we identify a critical probability of cheating at which the total wealth owned by the cheaters experiences a second-order discontinuity. Below this point, the transition probability to lose money is larger than the probability to gain; conversely, above this point, the direction is reversed. We further establish a threshold cheating probability at which cheaters collectively possess half of the total wealth in the game. Lastly, we provide bounds on the rate at which both cheaters and honest players can gain or lose wealth, contributing to a deeper understanding of deception in asset-exchange models.more » « lessFree, publicly-accessible full text available March 1, 2026
- 
            Many nonequilibrium, active processes are observed at a coarse-grained level, where different microscopic configurations are projected onto the same observable state. Such “lumped” observables display memory, and in many cases, the irreversible character of the underlying microscopic dynamics becomes blurred, e.g., when the projection hides dissipative cycles. As a result, the observations appear less irreversible, and it is very challenging to infer the degree of broken time-reversal symmetry. Here we show, contrary to intuition, that by ignoring parts of the already coarse-grained state space we may—via a process called milestoning—improve entropy-production estimates. We present diverse examples where milestoning systematically renders observations “closer to underlying microscopic dynamics” and thereby improves thermodynamic inference from lumped data assuming a given range of memory, and we hypothesize that this effect is quite general. Moreover, whereas the correct general physical definition of time reversal in the presence of memory remains unknown, we here show by means of physically relevant examples that at least for semi-Markov processes of first and second order, waiting-time contributions arising from adopting a naive Markovian definition of time reversal generally must be discarded.more » « less
- 
            Abstract Many-body dynamical models in which Boltzmann statistics can be derived directly from the underlying dynamical laws without invoking the fundamental postulates of statistical mechanics are scarce. Interestingly, one such model is found in econophysics and in chemistry classrooms: the money game, in which players exchange money randomly in a process that resembles elastic intermolecular collisions in a gas, giving rise to the Boltzmann distribution of money owned by each player. Although this model offers a pedagogical example that demonstrates the origins of Boltzmann statistics, such demonstrations usually rely on computer simulations. In fact, a proof of the exponential steady-state distribution in this model has only become available in recent years. Here, we study this random money/energy exchange model and its extensions using a simple mean-field-type approach that examines the properties of the one-dimensional random walk performed by one of its participants. We give a simple derivation of the Boltzmann steady-state distribution in this model. Breaking the time-reversal symmetry of the game by modifying its rules results in non-Boltzmann steady-state statistics. In particular, introducing ‘unfair’ exchange rules in which a poorer player is more likely to give money to a richer player than to receive money from that richer player, results in an analytically provable Pareto-type power-law distribution of the money in the limit where the number of players is infinite, with a finite fraction of players in the ‘ground state’ (i.e. with zero money). For a finite number of players, however, the game may give rise to a bimodal distribution of money and to bistable dynamics, in which a participant’s wealth jumps between poor and rich states. The latter corresponds to a scenario where the player accumulates nearly all the available money in the game. The time evolution of a player’s wealth in this case can be thought of as a ‘chemical reaction’, where a transition between ‘reactants’ (rich state) and ‘products’ (poor state) involves crossing a large free energy barrier. We thus analyze the trajectories generated from the game using ideas from the theory of transition paths and highlight non-Markovian effects in the barrier crossing dynamics.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
